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Abstract. In this paper we consider the ignition and structure of a reacting compressible mixing layer
using finite rate chemistry lying between two streams of reactants with different freestream speeds and tem-
peratures. Numerical integration of the governing equations show that the structure of the reacting flow can
be quite complicated depending on the magnitude of the Zeldovich number. In particular, for sufficiently
large 7eldovich number, the three regimes first described by Linan and Crespo (1976); ie., ignition,
deflagration, and diffusion flame, czcur in supersonic as well as in subsonic flows. An analysis of both the
ignition and diffusion flame regimes is presented using a combination of large Zeldovich number asymptot-
ics and numerics. This allows us to analyze the behavior of these regimes as a function of the parameters of
the problem. For the ignition regime, a well defined ignition point will always exist provided the adiabatic
flame temperature is greater than either freestream temperature. One important result is that at supersonic
speeds ignition occurs far downstream from the plate and, as the flow is accelerated to hypersonic speeds,
ignition is exponentially delayed. For the diffusion flame regime, the location of the flame changes
significantly with changes in the equivalence ratio and the Schmidt numbers.

This work was supported, in part, by the National Aeronautics and Space Administration under NASA Contract No. NASI-18605 %shile
the authors were in residence at the Institute for Computer Applications in Science and Engineering. NASA Langley Research Center.
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1. Introduction. Quite recently it has been realized that an undcrstanding of the structure and the sta-

bility characteristics of compressible, particularly supersonic, reacting mixing layers is extremely important

in the context of the scramjet engine. We have begun a systematic study (Jackson and Grosch, 1990) of the

inviscid spatial stability problem of these flows with the combustion zone modeled by the flame sheet, as

described by Jackson and Hussaini (1988). We found that the addition of combustion in the form of a flame

sheet had important, and complex, effects on the flow stability. In addition, we also showed that with

sufficient heat in the flame sheet the flow can undergo a transition from convective to absolute instability,

even without the presence of a region of reversed flow in the layer. There are of course situations in which

the flame sheet model may not be a sufficiently accurate representation of the combustion process. This

could be important in the calculation of the stability characteristics of the reacting flow. Therefore in this

paper we return to the problem of determining the structure of the laminar diffusion flame in a compressi-

ble, particularly supersonic, mixing layer in using finite rate chemistry.

In a seminal paper, Linan and Crespo (1976) examined the structure of a diffusion flamc in the

unsteady mixing of two half spaces of fuel and oxidizer. By using a combination of large activation energy

asymptotics and numerics they showed that three laminar regimes exist within the flow, the ignition,

deflagration, and diffusion regimes. These same regimes were also found by Jackson and Hussaini (1988) in

their study of combustion occuring between two parallel supersonic streams with nearly the same speed and
temperature. These three regimes are shown in Figure I. The ignition regime is a region where the coin-
bustible gases mix until, at some finite distance downstream of the plate, a thermal explosion occurs and the

gas is ignited. The second regime is the deflagration region. After ignition, a pair of wkell-defincd

deflagration waves (or "premixed flanelets" emerge according to 2lassical thermal explosion theory. These

waves penetrate the mixing layer until all of (he deficient reactant is consumed. Just downstrcan of the

deflagration wave, a diffusion flame regime exists where the mixing process is governed by diffusion in the

direction normal to the flame. This regime covers the bulk of the overall flow field. Collectively, the igni-

tion and deflagration regimes can occupy a very small portion of the flow field, especially at supersonic

speeds. These regimes are highly nonlinear and hence are not easily amenable to analysis. If the incoming

flow were turbulent rather than laminar, wc surmise there would be a collection of initially discrete

premixed flamelets. Full numerical solutions, based on the compressible Navier Stokes equations, appear to

miss the ignition and the deflagration regimes, and hence, the premixed flamclet is not captured. Perhaps

careful fine-tuning of the numerics will uncover these regimes.

The spatial development of the reacting compressible mixing layer is considered here without making

the assumption of infinite Damkohler number. If the Damkohler number were to be taken to be infinite, the

flow and combustion fields could be described by similarity solutions. With a finite Damkohlcr number, the

flow and combustion fields evolve in the downstream direction and only approacii the similarity solutions of

the flame sheet at infinite distance from the plate. The mean fields with finite Darnkohler number will, in a

future paper, be used in stability calculations.

In the next section we formulate the problem. Numerical solutions to the full equations are then

given in section 3. Sections 4 and 5 present an analysis of the ignition and diffusion flanie regimes using a

combination of large activation energy (and hence Zeldovich number) asymptotics and numerics. Conclu-

sions are then given in the final section.
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2. Formulation of the Mean Flow Equations. The nondimensional equations governing the steady
two dimensional flow of a compressible, reacting mixing layer with zero pressure gradient lying between

streams of reactants with different speeds and temperatures (Figure 1) are given by (Williams, 1985)

(pU). + (pV)" = 0, 1 = pT, (lab)

p(UU, + VU') = (PaU )", (lc)

p(UTZ + ,7y)= Pr- (gtdy), + (y- l)M 2ptU7 +3 , (2d)

p(UFJ., + VFJ ) = Scj' (p.F, ,), - , j 1,2, (lc)

Q = D pF 1 F 2 e - e T  (If)

In these equations, the x axis is along the direction of flow; the y axis is normal to the flow; U and V are
the velocity components in the x ard y directions, respectively, p is the density; T is the temperature; and
F1 and F2 are the mass fractions, with the reaction assumed to be irreversible and of the Arrhcnius type.
The viscosity pa is assumed to be a function of temperature. The nondimensional parameters appearing
alxve are the Prandtl number Pr, the Schmidt number Sc, - Pr Le, for species j where Le, is the Lewis

number for species j, the Mach number Al - U1a- , the Zeldovich number Ze = EIR T with E the
dimensional activation energy and R the universal gas constant, D the Dankuhcr number defined as the
ratio of the characteristic diffusion time scale to the characteristic chemical time scale, P the heat release
per unit mass fraction of the reactant, 0, a parameter involving stoichiometry, and finally y the specific-
heats ratio. The equations were nondirnensionalized by the freestream values T-, p-, U-, F1 . for the tem-
perature, density, velocities and mass fractions, respectively. Lengths are referred to some characteristic

length scale of the flow.

Tile boundary conditions consistent with (I) are

7'= U F I, F 2 - () at x =0, y >0, and x >0, y -4-4, (2a)

1 - < 1, F, = 0,F 2 = -... _( 2l) at x=0,y <0, and x>0,y -- oo, (2b)

,herc 0 is the equivalence ratio defined as the ratio of the mass fractioti F, in the fast stream to the mass
fraction F 2 in the slow strean divided by the ratio of their molecular weights times their stoichiometric

coefficients. If 0 = I, the mixture is said to be stoichiometric, if 0 > I it is F, rich, and if 0 < 1, it is F1

lean. If PT is less than one, the slow gas is relatively cold compared to the fast stream, and if 13
T is greater

than one it is relatively hot. For what follows we take the stoichiomctric parameter 0, to be unity.

The mean flow equations (I) are first transformed into the incompressible form by means of the

Howarth-Dorodnitzyn transformation

Li
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y y

Y =J pdy pV + Uf pxv. (3)
0

Next we transform to

2 ,ty (4)

which is the similarity variable for the chemically frozen heat conduction problem, and rj,, correspmnds Lo a

shift in the origin. For the case of both streams being supersonic, TI, is determined uniquely by a compau-

bility condition found by matching the pressure across the mixing layer, resulting in

I (X ,-) =,---I V qx21o= ________- -, v(x,-co),

which reduces to that given by Ting (1959) for -, 1. We note here that if the frcestream vclocitie, "cre

subsonic, then the compatibility condition would be trivially satisfied, and thus rl,, would remain indetcr-

minate (Klemp and Acrivos, 1972). Under these transformations, with U f'(Tf) and I = -x [ f
equation (1) become

f ±2ff 0, 0a0

4x f'T1 - Pr- 1 '" -2 fT" - (y - 1) M 2
(f )

2 - 4x JD F 1 F2
e  (5h)

4x f'F.. - S1. 1 Fl - 2 fF 1 = -4x D F1 F 2 e . (5c)

where the primes indicates partial differentiation with respect to the similarity variable TI, and we have

assumed the linear viscosity law p = T (for Chapman's linear law t = C T, the constant C can be scaled
out by rescaling r and f appropriately, but must be bome in mind when transforming the variables back to

their dimensional forms). In terms of the transformed variables, the boundary conditions are

T= f F1 - , F 2 =(0 at x= 0,T>0, and x> 0,Tl' , (6a)

'' = P.T,f' = P1,,F =, F 2=
-  at x =0, <0, and x >0,1 rl--o. (6b)

Finally, we note that the Damkohler number D can be scaled out of the equations by a rescaling of the x

coordinate. Thus, the Damkohler number is not a true parameter of the above system. However, rescaling x

by the Darnkohler number is not particularly useful. Since D is typically exponentially large the rescaled
coordinate will be exponentially stretched, and this is not desirable from a numerical viewpoint.

3. Numerical Solutions. The system (5) with boundary conditions (6) must be solved numerically.

Noting that f is only a function of Tl, we see that (5b,c) are parabolic in x and thus can be solved by a

marching procedure in x. We do this by a Crank-Nicolson procedure. This leads to an implicit nonlinear
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system of equations in -n which must be solved at each x step. These are solved by an iterative scheme

using the boundary conditions in r as given in (6).

In Figure 2a we plot the maximum temperature in TI versus x for Ze = 10, M = 3u 0,

13 0 =3 1. The adiabatic flame temperature is 1.5 for these conditions (see equation (50)), and is larger

than either freestream temperature. There is a smooth and gradual transition from the inert solution at

x = 0 to a diffusion flame. In Figure 2b we show similar results but with Ze = 30 and all other parameters

the ame. Note the sudden transition between the inert solution and the diffusion flame solution occurring

in a narrow range in x around x = 3. This initial region defines the ignition regime, and hence LhC fiamc

location. Similar results are shown in Figure 3 but for M = 2 with an adiabatic flame temperature of 1.7.

From this figure it is apparent that the ignition regime also exisLs in supersonic flows. As the Mach number

increases there is a corresponding increase in the inert temperature at x = 0 due to viscous heating, thus

lessening the relative effect of combustion on the overall temperature field.

In Figure 4 we plot the temperature and mass fraction profiles as a function of T1 at various x loca-

tions for the same conditions as in Figure 2b. In Figure 4a the rapid rise in the temperature over a narro¢w

range of x should be noted; this indicates ignition. Note also that the temperature peak shifts and that the

profile is asymmetric due to the aisymnielry in the Lock velocity profile. Figure 4b shows the profile of the

F, mass fraction. At the smaller values of x, F 1 decreases gradually from I at T -- + - to 0 at q -

with FI varying mos, rapidly over the range -3 < < 1. This shows that there is a diffusion of F from

the q _> 0 region into the q _< 0 region with F = 0 only at -9 - - -. As x is increased the rate of change of

F. with rl over this zone increases. For larger x one can see that F drops to zero for TI just below zero

show %ing the presence of a diffusion flame in which all of F, is consumed. But note that there is a small

secondary maximum in the F1 distribution i,1 -3 < 7l < -I. This shows the presence of a "premixed

flamelet" in this premixed region. The distribution of F, in T at various x is shown in Figure 4c and is the

converse of that of F,. The only exception is in the secondary maxima, showing that the presence of the
.premixed flamelet" is much more pronounced. Again the asymmetry of the secondary maxima is due to the

asymmetry of the velocity profile.

The existence of the "premixed flamcleLs" and the diffusion flame is shown quite clearly in Figure 5a,

where we plot the loci in the (x,1) plane of the maxima of Q, the chemical production term, also for the

data of Figure 2b. As shown in this figure, the position of the maximum decreases from about q = -0.2 at

x = 0 to nearly T1 - -0.6 at x z 2.9. The maximum value of 92 increases along this curve. At x z 2.9

ignition occurs and two maxima appear giving rise to the "premixed flamelets". Beyond the ignition point

the premixed flamclets move outwards in the shear layer until all of the deficient reactant is consumed. The

appearance of the third maxima just behind the ignition Ix)int marks the appearance of the diffusion flamc.

As x is further increased, the diffusion flame becomes dominant and, as x --- -, the diffusion flame thins

and approaches a flame sheet characterized by local chemical equilibrium (Jackson & Grosch, 1990). Note

that the diffusion flame location is constant in it as x increases.

In Figure 5b we show similar results for the same values of the parameters except that Pi. = 0.5 and

1.5. This case corresponds to unequal freestream temperatures. The adiabatic flame temperature is 1.5

(again see (50)), and is larger than either freestream temperature. Note that the ignition point has moved

into the region of higher freestream temperature, and the Iocation of the diffusion flame is unchanged while

that of the premixed flames has changed. In Figure 5c we show results for [PT = 0.5 and P = 0.4. The

Z 
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adiabatic flame temperature in this case is 0.95, and is smaller than the freestream temperature at + o. In

contrast to the two previous figures, there is no well defined ignition point; the premixed flame merges

smoothly into the diffusion flame whose location is unchanged. In addition, the premixed flamclets are

absent. Finally, we note that the behaviour described in Figure 5 also occurs for Mach numbers greater than

zero.

In the following two sections, an analysis of the ignition regime and a brief discussion of the diffusion

flame regime is given using a combination of large activation energy (and hence Zeldovich number) asymp-

totics and numerics.

4. Ignition Regime. To investigate the above behaviour analytically for large Zeldovich numbers, we

take Lej = 1, Pr = 1, resulting in Sc, = 1. This allows us to consider linear combinations of (Sb) and (5c)

which eliminates the source terms. The solutions of the resulting equations, using the boundary conditions

(6), are given by

7 + J3F, = Pr + (I - Or + O)Y + Y I M 2 (l - p1,,) ,( - 4j), (7)

T+ 3F 2 = P, + P 0- t( - -0-1 1 -- M2 (l _ )2 p(I - p), (8)
2

where

(f' - P1)/(0 - Pt!) 0< u3' < I

(1 + erf/)2 = I.

Thus F I and F 2 can be eliminated from the energy equation (5b), yielding

4xf'T -7"'- 2f T' - (y- I)M 2 (I - p,)2(kp')
2

4 xD [ 1. + (PT + 0) ' + M2(1 )2p(l T) -7113 2

OT + 
-' + (I - T- 0/)

2 2( - 1 ) - e- 0)2

for the temperature, subject to the boundary conditions

T = I at x =0,71>0, and x >O,l -, (Ila)

S= OT at x =0, TI<0, and x >O,rl----o. (Ilb)

In the absence of chemistry, equation (10) reduces to

4xf '7 - 7"' - 2f T' - (y - 1)M
2(1 - 1U )

2 (,p') 2
= 0, (12)
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which possesses the inert similarity solution

T1  T1() = I - (1 - T - ) + - M2 (l - (1)2 3)(l -V),

which is also a solution of (10) for small x. As x increases, more of the combustible mixes until, at some
finite distance downstream of the plate, a thermal explosion occurs characterized by significant departure

from the inert.

To analyze the ignition process, we expand about the inert by defining 1

T = Ze (T - T,), (14)

and take the asymptotic limit Ze -+ oo. Substituting into (10), we see that the left hand side becomes

O(Z " 1 ) while the right hand side is O(D c Ze. ), where T. = max(T,). In order to balance these terms,

D must therefore have the form

where 8 will be chosen in the course of the analysis. Substituting (14) and (15) into (10) yields the follow-

ing equation for T.

4x 1,, - T: - 2f r = 4x 143 -ze -I', 1

X~ ~ ~ ~~i Y)-Zr1.- PT + Ze (T/ - T. (16)F1 3cr *F)1 (16)

which must be solved subject to the boundary conditions

T,=0 at x =0 andat Tj--+o. (17)

Note that the right hand side of (16) is exponentially small except where I'll - T. I O(Ze 1 ). There arc
now several cases to consider, depending upon the magnitude of the parameters PT, PtP and M. Each case

is described below.

4.1. 1- 3 Il<< 1, 11-(P, << 1, and M=O(l).

This case corresponds to the simple but important case of ignition for nearly equal freestream temperatures

and velocities, and the analysis is presented by Jackson and Hussaini (1988). For this reason, we only briefly
review the results here. We begin by setting

O T 'e ( T P), OU = v'- (l - P), (18)
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with Or, Ou, and M fixed and 0 (1). In particular, we see that

f = + O(Ze- 2), YP = , + O(Ze-i 2), P o  (I + erfrl). (19)

The inert solution (13) is expanded as

1 + Ze - [- T (0 - 'Po) + 2 2
o (1 -'Po)]+0(Ze2 ), (20)

which yields T. = 1. Substituting into (16), together with the choice 8 1, yields the following equation

for the disturbance temperature

4x T 1 - 21l T' - T;' = 4x T. (I - 41,) exp TI - T (1 - 4J.) + M 2r3 2'P (l -1 (2!

subject to the boundary conditions (17). This equation was solved numerically by a Crank-Nicolson implicit

scheme. As x increases, the solution for TI becomes unbounded at some finite location (x. , TI.) downstream

of the plate, indicating thermal runaway. The results are presented in Figure 6, where we plot x. and T1. as

a function of M Ofu for various values of RT. Note that for a fixed DTr, increasing M V causes the ignition

point to move closer to the origin. For a fixed M Ou, increasing (or decreasing) OT from zero (i.e., cooling

(or heating) the gas from below) causes q. to move into the region of higher frecstream temperature. n

addition, x. increases as the gas is cooled below and decreases as the gas is heated below.

As noted above, as OT increases or decreases from zero, the ignition point moves into the region of

higher freestream temperature. This case corresponds to different freestream temperatures, and can be

analyzed in the limit IOT1 --4 -. We shall assume 1. < 1 (OT > 0) and hence the ignition point is located in

the region r1 >> 1. The analysis for the case 5T > 1 (T < 0) is similar. Following the analysis of Linan and

Crespo (1976), we set

r3(l - o) =z, 0<z <00, (22)

and using the asymptotic expansion of '1., we see that

712 = In (OT / 2 "n) - In r - In z. (23)

The reaction zone is located where z = 0(1), and to a first approximation we get

I! = In (T / 2 Vn) - In il., (24)

where -q. defines the ignition location. Since the chemistry is confined to a thin region about 1., we shift to

the reaction zone coordinate

1I=TI. - Inz. (25)

2 mm m m mm m mm m mmlm
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Substitution into (16), together with 1. = 1, and neglecting terms of O(7jz2), yields a canonical equation for

T 1. Repeating the analysis for T > I yields a canonical equation for T1 of exactly the same form, the

differences being in the definition of the parameters, the flame now being located in the slow stream where
the gas is initially hotter, and 1. r. This canonical equation, originally given by Linan and Crespo

(1976) in a different context, is

-x1 - 1 z 2 W, = (z - A y)e -  (26)

whcre

X / (k A 2) 0( < Irr'P <1 (27)

X ; X / -1 .n 1 2 > 1 ,El ( 3 1 ) / 1 P T .> 1 -I .7

This equation must be solhcd sub ject to the boundary conditions

\l(O) - 0, Y,( ) 0,

The first boundary condition is a restatement of (17), while the second boundary condition comes from
niatching with the chemically froen region q - 0 (I). Note that x is now a parameter of the equation.

Linan and ('respo ha-e shoA n that for A < 1, y is doubled valued for x < x ., single valued at

x, and does not cxIS t Or r > x .. Near x . we note that y / i x, becomes large showing that the x

partial derivative can no longer be neglected in (16). Therefore x,. may be considered as the ignition point.

For % > 1, y is single valued for all zx indicating that there is no well defined ignition point. In this case
thc premixed flame merges smoothly with the diffusion flame and there are no premixed flamclets. This

bchaviour is shosvvn numerically in Figure 5c. In Figure 7 we plot the ignition point x1 . versus A. As A

approaches one froni bclow,, the ignition point moves off to infinity, while for A > I there is no well defined
ignitio)n poiint.

4.2. 11 [- [ << I, [i < 1, and M < < 1.

This case corresponds to nearly equal freestream temperatures in a shear flow at small Mach numbers, and
ve therelore set

S:Ze (I -- 13., ' e 7 M, (29)

with j and P fixed and 0(1). The inert solution (13) is now expanded as

T/ = I +Ze 1I-,(l -') + 7 Mt2 (l _ 1,)24f( -') + O(Z-2),

again yielding 1'. = 1. Here, TP is given by (9 a). Substituting into (16), again with the choice 8 = 1, yields
the equation for the disturbance temperature
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4xf T - 2f T, - T" = 4x Y(I - Y) expT- -(1 - '')+ 2 (,' (31)

subject to the boundary conditions (17). This equation was again solved by a Crank-Nicolson scheme. As x

increases, the solution for T 1 becomes unbounded at some finite location (x. , T.) downstream of the plate.

indicating thermal runaway. Some results are presented in Figure 8, where we plot x. and TI. as a function

of 031 for various values of M and rOT = 0. We first note that for = 1, the ignition point is independent

of the Mach number. For a fixed M, decreasing 0, from one causes the ignition point to move back

toward the plate and into the slower moving gas. At fixed O3u < 1, an increase in ,M causes the ignition

point to shift toward the origin.

Increasing or decreasing Dr has the same effect on the ignition location as in the previous case. To
se this, we first note that the asymptotic expansion of the Lock profile (9a) for large ri is given by

I - A (q+ B)-'exp(-(TI + -+ B 32)f. = ,j 32
fi + A (.BK'x-3(1 + B )2) _

w, here A and B arc known constants. Following the analysis of the previous section, we again obtai Ulh

canonical equation (26) for the temperature perturbation, wkith x, now given by

i )X) < I

X: ii)

Sx '(- qi. B C) f > 1,

and A as before.

4.3. [1 >0, 0 7< f31 < 1, and M >0.

For Mach numbers greater than zero, ft, < I and any value of 't, the inert solution (13) has a niaximun at

0: i.e.,

' -Y 1 -12 2 \ P) (34)

If IF = 0, then the location of the reaction zone will occur in the outer rcgion 11q >> I where the gas is
initially hotter. Since the analysis for this case will be similar to that of the previous two cases, we will not

present it here. If the second term of (34) is zero, then the reaction zone will occur in the mixing layer, and

is given by the implicit relation

Mi.l -
2. - ((1. I I - PT (35)2 (y I)Mf2(I - p3t,)2

!L
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The corresponding maximum value of 7 is given by

T.= a TI T  - IS M2 (I _ p3u) 2 + PT'(36)
T. max(T 1 ) 1 2 8 2(y'- I)M 2 (1 - p,) 2 (

Substituting (34-36) into (16) shows that the right hand side of (16) is exponentially small except in a nar-
row region where JTW - T.I = 0(7-e1). Outside this region the equation is essentially frozen, and is given

by

4x T,., = T, + 2f T, (37)

valid on either side of the reaction zone. To study the structure of the reaction zone we define the new

coordinate

TI Z TI. + 8 z, (38)1

where 8 is the thickness of the reaction zone and is not yet specificd. The temperature and velocity arc also

expanded as

T= I.+8/I(xrl)+ -- 'V. + 6 : '. (39)

Substitution into (16) yields

d21,11 ~~~ ~ ~ [ " t-IM( t)2(W , -

.z 2  -4x P. k I - T. .)expL y 2  r (40)

where we have chosen 1 4-1 Note that (40) can be integrated once to yield

d -d(x) - -xp-_b2 21d + cI(x), (41)

whcre

d(x) 4x T. (I - 4P.)expli1 /1T.21 ,(42a)

b 2 ' (42a) ( ) - 2

b 2 y-1 Mi1- Pv )2 (T. )2 .-. (42b)

Evaluating (41) at z = t yields the matching conditions for (37). Specifically, we now solve (37) subject

to the boundary and jump conditions
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dl (43
T (xoo) = 0, T1(x,l.+ ) = T 1.(x), d-(x,fl.') = cI(x) - (x) (43)

d I'

dTi
T, = 0, Ti(xr.) = T.(x), -d(x,r) = c(x), (44)

with the initial conditions

T1(0,) = 0, .i t T9.. (45)

Equation (37), valid on either side of the reaction zone, can be solved numerically by marching forward in
x. The unknown functions Tj.(x ) and c(x) are chosen at each x location so as to satisfy the boundary con-

ditions at 1 = +. Thermal runaway will occur at (x.,71.), thus defining the flame location. In Figure 9 we
shok T,. and c ,s a function of x for 01 = 0.5, Ot, = 0, and M = 2. Note that as x approaches x., 7:.

b'comes unbounded indicating thermal runaway. In Figure 10 we plot the ignition location x. and rl. as a
function of the Mach numbc. for f3t 0 and various values of l. As the Mach number becomes large x.
rno\cs off to - A hile T1. tends ito /ero for any [3r. This shows that in the supersonic region ignition

okcurs far downstream of the plate and, as the flowA is accelerated to hypersonic speeds, ignition is exponen-
tialI\ delayed. For unequal freestreani temperatures (fP*r ? 1), as the Mach number goes to zero then T].

n%C, out IOf the mixing layer into the region of higher freestream temperature. When this occurs this
and 's, Is no longer appropriate, and one must consider the case of '+ 0 in (34).

5. Diffusion Flame Re,.. . Typically, a diffusion flame is characterized by a chemical reaction litte
that i, much smaller than a characteristic diffusion time. Chemical reactions then occur in a narrow zone

betxeen the fuel and the oxidizer, where the concentrations of both reactants are very small. Mathemati-

cally, the assumption of very fast chemical reaction rates leads to the limit of infinite Damkohler number
, hich reduces the diffusion flame to a flame sheet (i.e. local chemical equilibrium). This assumption

sgnificandtl reduces the complexity of the problem since it eliminates the analysis associated with tie

chemical kinetics. For many flows, the assumption of local chemical equilibrium adequately predicts the

location and the shape of the diffusion flame (Buckmaster and Ludford, 1982; Williams, 1985). Since the
flame sheet model has a simple similarity solution md hence is amenable to analysis, we give its structure

below. For finite values of the Damkohler number, equations (5bc) must be solved directly using the

numerical scheme mentioned above.

Assuming unit Lewis and Prandtl numbers and a linear %iscosity law, the profile associated with the
flame sheet model is given by (Jackson and Hussaini, 1988, Jackson and Grosch, 1990)

F, = I - (I + 0-1)(1 - P), F 2 = 0, (46)

S= r + 00 - + (+ - 3r - 30-1) p + -1 M12(I - p3)2 p (I - p1). (47)
2

valid for Tj > Tjf, and
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F, 0, F2, )- (I + Y) ) , (48)

2+ ( + ),V + M
2( - 1L',W21(I - F), (49)2

valid for Tl < TIf. Here, 71f gives the location of the flame sheet where both the reactants vanish, and T"

takes the adiabatic flame value

"If = [3T + (I - f3i + ±%+-5
PT+0-PF+ f+12 M2 (I - P(i2 Yf ( I - Yf(50)

The flame location is given by the implicit relation

Ii,~ J (51)
!- d(ld-1 + 0

khich is independent of P, and M. This is only valid for the case of a linear viscosity law where the
momentum equation decouples from the energy equation. For a more general viscosity law, the flame loca-

tion will depend on P, and Al as well. When using (3) to transform back to the physical coordinates, the
diffusion flame location in physical space will depend on Pl,, , 7. and AM, independently of the viscosity-

temperature relation. The internal structure of the diffusion flame, which appears as a discontinuity on the T1
scale, is desLritbed In in Jackson and lufssaini (198).

The abo ve assumption of unit Lewis and Prandtl numbers led to a closed-form analytical solution.

Since the Prandtl number is about 0.72 and the Lewis numbers are not one, the Schmidt numbers Aill in
ecncral not he one. To determine the influence of the Schmidt numbers on tie location of the diffusion
flame, A e begin by considering (5b,c) in the limit of infinite Damkohler number

Pr - 1 + 2 fT" + (y - 1 M2(f")2  0. (52)

Sc;1 F )" + 2 fFJ = 0, (53)

valid on either side of the flame sheet. The appropriate boundary and jump conditions are given by

1 - I, F, - I, F, = 0 as TI ---> -, (54a)

IPr-" T' Sc F1 0, I"] = O, F, =F 2  0, at T TI, (54b)

T [3r, F, = 0, F 2 =0
-  as --4 -, (54 c)

where [ I denotes the jump ( ) - ( at T11" Integrating the equations (53) for the mass fractions yields

F, = I -cf(Y)S dTI, F 2 =0, (55)
Ti
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valid for T1 > 7/, and

T1

F, = 0, F 2 = - c 2 f (P)Sc2d (56)

valid for )i < i. Using the boundary condition F1 = F 2 = 0 at )if yields

Cl =-- I_ C 2 -= _ _ (57)

rlf _f

The location of the flame sheet TIf, where both reactants vanish simultaneously, is given by the implicit

relation

S, f ('')' d)I = Sc1  )s"F, -s" f '')s dT,

obtained from the jump condition (54b) on the derivatives. In Figure II we plot the flame location as a
function of Sc, for various cases. In Figure Ila we show the variation with Sc2. As Sc, increases the flame
location moves into the slower moving stream. In Figure 1 lb we show the variation with the equivalence
ratio. As 0 increases the flame location also moves into the slower moving stream. Finally, in Figure 1 Ic we

show the variation with ,Pe.. As PI, increases the flame moves into the faster stream.

6. Conclusions. In this paper we have considered the ignition and structure of a reacting compressible
mixing layer using finite rate chemistry lying between two streams of reactants with different freestream
speeds and temperatures. Numerical integration of the gverning equations show that the structure of the
reacting flow can be quite complicated depending on the magnitude of the Zeldovich number. In particular,

for sufficiently large Zeldovich number, the three regimes first described by Linan and Crespo (1976); ie.,
ignition, deflagration, and diffusion flame, occur in supersonic as well as in subsonic flows. Our numerics
pick up the premixed flamelets as clearly shown by the distribution of the production term. Again, depend-
ing on the magnitude of the Zeldovich number, there can be a gradual or sudden transition from an inert

solution to a diffusion flame.

An analysis of both the ignition and diffusion flame regimes was presented using a combination of
large Zeldovich number asymptotics and numerics. This allowed us to analyze the behavior of these regimes

as a function of the parameters of the problem. For the ignition regime, a well defined ignition point will
always exist provided the adiabatic flame temperature is greater than either freestream temperature. One
important result is that at supersonic speeds ignition occurs far downstream from the plate and, as the flow
is accelerated to hypersonic speeds, ignition is exponentially delayed. For the diffusion flame regime, the
location of the flame changes significantly with changes in the equivalence ratio and the Schmidt numbers.

There are substantial changes in the temperature and mass fraction distribution as the mixing layer

evolves downstream. These are expected to have a considerable effect on the stability characteristics of the
flow. The changes, and particularly the rate of change, in the mean profiles were shown to be very sensitive
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to the value of the Zeldovich number. Therefore we expect that the stability characteristics will also be

quite sensitive to the value of the Zeldovich number. The stability calculations are underway and will be

reported at a later date.
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Figure 1. Schematic showing the reacting mixing layer, where diec adiabatic flame temperature is

greater than T, and 1'2.
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Figure 7. Plot of the ignition location xj* versus A.
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